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Abstract

Errors in model parameters, sensing, and control are inevitably present in real robot sys-
tems. These errors must be considered in order to automatically plan robust solutions to
many manipulation tasks. Lozano-Pérez, Mason, and Taylor proposed a formal method for
synthesizing robust actions in the presence of uncertainty [7]; this method has been eztended
by several subsequent researchers. All of these results presume the ezistence of worst-case
error bounds that describe the mazimum possible deviation between the robot’s model of the
world and reality. This paper ezamines the problem of measuring these error bounds for a real
robot workcell. These measurements are difficult, because of the desire to completely contain
all possible deviations while avoiding bounds that are overly conservative. We present a de-
tailed description of a series of ezperiments that characterize and quantify the possible errors
in vmisual sensing and motion control for a robot workcell equipped with standard industrial
robot hardware. In addition to providing a means for measuring these specific errors, our
ezperiments shed light on the general problem of measuring worst-case errors.
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1 Introduction

No real robot system operates with perfect sensory in-
formation or control capabilities. Consequently, real
robot sensory data is an imperfect measurement of the
world, and real robot motions only approximate the
intended motions. These factors may cause robot ac-
tions that will succeed in an ideal world to fail during
execution in the real world.

This reality is one of the key reasons that automatic
planning and execution systems are not currently em-
ployed to solve tasks with high precision requirements.
For example, assembly tasks often require insertions
that have tolerances that are much tighter than the
sensing and motion control capabilities of current in-
dustrial robots. Thus, an automatic task planning sys-
tem cannot simply command a robot motion to move
the parts into their desired positions; such a motion
will inevitably lead to collisions that do not occur in a
perfectly executed motion.

Compliant motion strategies are often used to suc-
cessfully accomplish insertion tasks. Part features such
as chamfers guide the parts into the desired locations,
effectively removing errors. Similar strategies may be
employed to improve the reliability of part acquisition
tasks. To date these strategies are designed manually,
since automatic planning systems do not exist that can
automatically synthesize compliant motion strategies
for real robot tasks.

Lozano-Pérez, Mason, and Taylor [7] have proposed
a method for synthesizing robust compliant motion
strategies. In brief, this method assumes a worst-case
model of robot errors, and performs an analysis of the
task geometry and mechanics to identify compliant mo-
tions that will accomplish the task goal in the presence
of errors. Lozano-Pérez, Mason, and Taylor explain
their approach using an abstract model of robot ac-
tion; if we can implement a planner that performs this
analysis for real tasks and provide the necessary in-
put data, then automatic planning of robust compliant
motions can become a reality.

The development of such a planner has been a pri-
mary focus of the Sandia Manipulation Laboratory for
several years. Our work toward an automatic planning
system will be described in a forthcoming paper. In
this paper, we focus on the input part of the prob-
lem: How can we obtain the required worst-case error
bounds?

Figure 1 shows a simple example that motivates this
problem. In this scenario, a robot is attempting to
insert a peg into a hole. The robot has a model of the
hole’s location, expressed as (z,y) coordinates. The
robot also has a model of the peg’s position relative to
its gripper. The robot inserts the peg by calculating
the arm position that will place the peg directly above
the hole, moving there, and lowering the peg into the
hole.
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Figure 1: (a) The robot must locate the hole in vision
coordinates. (b) The robot must insert the peg into the
hole.

In an ideal world, the true positions of the peg and
hole will exactly correspond to their modeled positions,
and the robot’s motion will exactly track the com-
manded motion. Under these conditions, the insertion
will always succeed. In the real world, errors will arise
that cause the true positions to deviate from the mod-
eled positions, and the robot motion to deviate from
the intended motion. These errors may cause the in-



sertion to fail.

‘We can determine whether failure is possible by per-
forming a worst-case error analysis. We begin by ob-
serving that the allowable error in the peg’s position
before insertion is €max = Thole — Tpeg, Which is the
peg/hole clearance. If the distance between the (z,y)
coordinates of the center of the peg and the center of
the hole is less than €mayx, then the peg will slip into
the hole. The maximum possible deviation is obtained
by €total = €hole + €grasp T €motion; where epole, €grasp;
and €motion describe the worst-case errors in the hole
position, the peg position relative to the gripper, and
the robot’s motion accuracy. If €iota) < €max, then the
insertion will be reliable.

This example shows how worst-case error bounds
may be used to evaluate the reliability of a proposed
robot action. The Lozano-Pérez, Mason, and Taylor
method generalizes this technique to problems with
more complicated task geometry and mechanics, con-
sidering additional sources of error. Their work has
been extended and refined by subsequent authors, re-
sulting in several prototype automatic planning sys-
tems [5, 4, 6, 1].

One assumption underlying all of these research re-
sults is that worst-case error bounds such as epole, €pegs
and €motion May be obtained and provided as input to
the planner. How can these error bounds be measured?

This paper describes a series of experiments per-
formed in the Sandia Manipulation Laboratory to char-
acterize the worst-case errors in visual sensing and mo-
tion accuracy for the laboratory workeell. These exper-
iments served to measure the inherent error character-
istics of the workcell for later use in task analysis ex-
periments, as well as providing insight into the general
problem of estimating worst-case error bounds.

The workcell is shown in Figure 2. An Adept One
manipulator is mounted on a rigid steel base which is
welded to the worktable. This worktable is roughly
two meters square, and is precision-ground so that the
work surface is flat and level to within £0.1mm. Tool-
ing balls are mounted on the table to facilitate repeat-
able placement of experimental modules, attached to
standard mounting plates. Surrounding the worktable
is a truss structure designed to support lights, lexan
safety barriers, and coarse-view overhead cameras. The
lights are designed and located to provide even illu-
mination of the table surface; measurements indicate
that light intensity varies by only 5% over the table
work area. The robot is equipped with an end-effector
which includes a gripper, compliant wrist, force sensor,
and close-view camera. Visual processing is performed
using standard vision analysis procedures included in
the Adept controller (see Section 3.1). In the experi-
ments we describe here, the force sensor and compliant
wrist are not used.

This workcell was designed to perform a series of ex-

Figure 2: (a) The workcell. (b) Close-up of the ro
end-effector.

periments measuring the robustness of automatic:
planned manipulation actions. These experiments
have the same basic format: Given a desired action



test, the robot visually measures the current location of
an object to be manipulated, calculates and moves to
the desired starting position relative to the object, exe-
cutes the action, and checks the result using vision and
other sensors. This process is repeated autonomously
over thousands of trials, thus obtaining action reliabil-
ity measurements over a range of varying initial condi-
tions. A common theme in all of these experiments is a
basic strategy for initiating the action: Visually mea-
sure the object’s location in the world, compute the
robot position to achieve the desired relative position,
and move there.

These experiments require worst case error bounds
€vision 8Nd €motion describing the maximum possible er-
ror in the measured object location, and the arm’s po-
sition accuracy. Our work currently focuses on planar
models of action, where points in space are described
by (z,y,8) coordinates. Thus to characterize the error
properties of the basic measure-calculate-move action
setup strategy, we need four error bounds:

€vision,,,

The maximum possible distance between the mea-
sured (z,y) object position and its true position,
relative to the camera.

€visiong

The maximum angular deviation between the
measured object orientation 8 and its true orien-
tation, relative to the camera.

€motionay

The maximum possible distance between the true
(z,y) position of the robot’s quill center at the end
of a motion, and the intended position. The goal
position may be an arbitrary input (z,y) point,
and is not taught. Thus, €motion,, i5 a measure of
the robot’s accuracy, not its repeatability.

€motiony

The maximum angular deviation between the true
8 orientation of the robot’s tool flange at the end
of a motion, and the intended orientation. Again,
€motion, 1S @ measure of the robot’s accuracy, not
its repeatability.

In order to obtain consistent visual position measure-
ments over a broad class of task objects, we employ a
uniform object position measurement procedure. We
paint two white circular dots on an object, and paint
the object and background flat black to eliminate other
features and shadows. If the dots have different diam-
eters, then the object position and orientation are ob-
tained directly from the measured dot positions. Thus
€vision,, 1S equal to the maximum possible error in lo-
cating a dot, and €yision, = tan_l(2e‘,i,ic,,,=w /d), where
d is the distance between dot centers. The motion er-
IOTS €motiony, @Nd €motion, are intrinsic properties of
the robot arm and its controller. Therefore we need to
Measure €vision,, s €motiony, s and €motion, oI our robot
system.

Measuring these values is tricky. To support the
goals of compliant motion planning using worst-case
analysis methods, we must assure that no error can
ever exceed its associated ¢ bound, while also avoiding
¢ values that are overly conservative. These competing
requirements prevent the blind application of conven-
tional RMS or 6¢ error modeling techniques, at least
for the cases we studied.

The remainder of this paper will explain how we
measured and verified these error bounds for the San-
dia Manipulation Laboratory workcell. Section 2 will
compare our results to past work in robot calibration.
Section 3 will address évision,,, and Section 4 will ad-
dress €motion,, a0d €motion,- Section 6 will discuss some
of the lessons learned during this exercise. In brief,
we view our results as positive because we successfully
measured the required worst-case error bounds for a
complex robot system, but worrisome because of the
effort required to obtain these measurements. Our fi-
nal results for the error bounds of the workcell are:

€vision,y, = 0.119mm
€vision, = tan”! (Z‘_“:;&)
€motion,, — 0.13mm
€motion, = 0.20 °

where d is the distance between the dots on the ob-
ject being measured. These values of €vision,, reflect
the results of applying correction terms to eliminate
substantial lens distortion effects; without these cor-
rections, €vision,, Would be 6mm.

2 Previous Work

Much work has been done to evaluate the capability of
vision systems to locate objects with a defined preci-
sion. The field of photogrammetry was an early driver
[2, 3], as increasingly higher levels of accuracy were
sought. Often a model was developed to relate cam-
era parameters to resultant object displacements from
ideal locations within a scene. The complexity of the
models did not always correlate to improved camera
characterization, and limited the range of applications
addressed. Simulation was often used to provide tes-
timonial of the improvements in performance, and re-
sults may or may not account for noise or lens distor-
tion. Several computationally intense algorithms have
been developed to provide subpixel registration within
a scene (e.g, [11]). Time constraints limited the ap-
plicability of many of these routines. In 1985 Roger
Tsai [13] proposed a method for a camera calibration
using standard TV cameras and lenses, and in 1987



Peter Seitz (8] proposed an algorithm to provide bet-
ter accuracy for these cameras. Tsai’s procedure has
the advantage of only needing to be performed once
for a given camera, but required a strong model of lens
distortion and ignored the effect of noise. Seitz’s work
required symmetrical distortion of the lens, the use of
symmetrical filtering, and also ignored the contribution
of system noise. The previous results failed to address
all contributors to video system distortion. Our work
devises a method to characterize worst-case errors that
accounts for all of the error contributions.

We chose to analyze the relationship between the
camera and the image plane as an arbitrary mapping of
smooth distortion values. This allowed us to use a very
weak model of the camera parameters at the expense of
system memory used for storing a lookup table. Once
the camera is corrected, it is used to provide a mapping
of displacements of the robotic arm in the workcell. We
also chose to use lookup tables (with inherent memory
requirements) instead of characterizing and correcting
a strong model of the robot kinematics.

In 1994 Shah and Aggaral [9] published a paper doc-
umenting a similiar process in their work for correcting
a fish-eye lens. The approach taken by Smagt, Groen,
and Krose [10] in their work at the University of Ams-
terdam in 1993 relied upon vision systems and a nueral
control algorithm to correct the kinematics of the robot
in an adaptive control process. A drawback to this ap-
proach is the computational complexity which requires
specialized hardware to provide real time processing.

Adept Technology has a commercial product that is
essentially the same as our position table lookup al-
gorithm. Their product may be used to map an area
as large as ours (by overlapping smaller area maps)
with some increased complexity, however it does de-
liver better accuracy. The Adept product requires end
of arm tooling (a light point source) attached to the
robot. Points on a glass grid are then visited and com-
pared to the commanded point. Errors are recorded in
a lookup table and movements to these points are cor-
rected as they are made. Our method does not require
additional hardware if the camera is required during
experiments. Another advantage of our method is that
all measurements are made with the experiment tool-
ing in place, and drift due to temperature variations
and wear on the manipulator may be corrected on-line.
These corrections are not currently implemented.

3 Measuring €yision

3.1 Dot Location

As explained above, we are interested in character-
izing the error in the robot’s ability to measure the
(z,y) position of a high-contrast circular dot in its
workspace, using the close-view camera attached to its
end-effector. To focus on vision-related effects, we will
express this error in terms of the camera coordinate

system, and not include possible errors in the robot’s
positioning of the camera. These errors will be ad-
dressed separately in Section 4.

There are several possible methods for locating cir-
cular dots in an image; the Adept vision system pro-
vides at least three: general blob analysis, circular arc
fitting, and linear rulers. General blob analysis is per-
formed by classifying pixels into groups by intensity
levels and finding the centroid of the pixels classified
as members of a dot. The circular arc fitting method
identifies pixels corresponding to the boundary of the
circular dot, and fitting a circle to these points. The
ruler-based method is performed by using linear edge-
detecting “rulers” placed vertically and horizontally,
to measure the diameter of the dot and thus its center
point. See Figure 3.

These methods vary in their robustness. Recall that
in our workcell, the lights were designed to provide even
illumination of the work area. This even illumination
is corrupted by the presence of the robot, which ob-
structs a few of the light sources. Because light comes
from several different directions, the resulting shadows
have fairly low contrast; however, this does cause varia-
tions in the overall scene intensity related to the robot’s
configuration. These variations can adversely affect the
general blob analysis methods, because the pixel classi-
fication schemes they employ are sensitive to intensity
changes. In contrast, the linear ruler method remains
robust in the face of smooth intensity changes, since
the dot boundary still produces a high-contrast edge
even when the total illumination varies.

The dot-finding methods also vary in their sensitiv-
ity to dot size. As the size of the dot increases, the
number of pixels covered by the dot also increases. The
resulting increase in information can improve the effec-
tive resolution of both the blob analysis and arc fitting
methods, since more pixels contribute to the statisti-
cally averaged estimate of the dot center or boundary.
Conversely, resolution degrades as the dot size shrinks.
Since we expect to manipulate small objects in some
of our experiments, we would prefer to use a method
whose accuracy does not degrade with dot size.

For these reasons, we chose to employ the ruler-based
method of finding dots. This is accomplished by start-
ing with a nominal (z,y) dot location that is known
either from the expected dot position, or preliminary
blob analysis. A horizontal ruler is used to detect edges
on either side of this center point; the resulting edge-
crossing z-values are used to refine the estimate of the
dot center z value. A vertical ruler is then placed at
this refined z-value, and the edge-crossing y-values are
used to determine a refined dot center y value. Since
the original horizontal ruler was likely placed above or
below the dot centerline, the crossing angle of the dot
edges was likely not perpendicular. To avoid a loss of
accuracy in the dot’s measured z position, a second
horizontal ruler is placed, now using the refined z and



Center 1=(X1+X2)/2  Center 2=(Y1+Y2)/2

Y3

Center 3=(X3+X4)/2  Center 4=(Y3+Y4)/2

Figure 3: The dot location method. This procedure was
tested with up to twelve lines; convergence after four lines
made further iterations redundant.

y coordinates obtained thus far. This yields a further
refined &’ value. This process is illustrated in Figure 3.

Further refinements are certainly possible, yielding
a series of incrementally improved ¢/, 2", 4", ... values.
Testing revealed that values reliably converged by z”,
so we adopted a canonical strategy of stopping refine-
ment after z’ was calculated. The resulting dot-finding
strategy thus requires four ruler edge-detection opera-
tions per dot, and some simple arithmetic.

3.2 Error Model

After selecting a concrete dot-finding procedure, we
can proceed to characterize its error properties. This
immediately raises a fundamental question: How do we
measure worst-case errors?

This question raises a number of issues, not the least
of which is what we mean by “worst-case.” One could
argue, given an adversary allowed to impose any catas-
trophic event, that it is impossible to bound the set
of possible behaviors of a system. This includes turn-
ing off all the lights, unplugging the camera, painting
defects on the dot, etc. In the worst case, very large er-
rors will result if certain critical logic circuits fail in just
the right way, returning values such as 3.45 x 105mm.
In order to cover all of these scenarios, we need to se-
lect an €yision €qual to the largest number that can be
represented by the Adept processor.

This doesn’t seem to be very useful. Instead, we
will assume that such catastrophes are avoided, and
the returned (z,y) coordinates represent the result of
a normal analysis of a proper dot image. Under this

assumption, how much error can there be between the
measured and true dot positions?

One possibility would be to develop some means of
comparing measured values against ground truth, take
a large number of such measurements, and then cal-
culate the standard deviation o of the resulting error
values. We could then take €vision,, = 60, and assert
that error values outside this range are practically im-
possible. This approach is somewhat unsatisfying. The
method is perhaps reasonable when error distributions
are Gaussian, but so far we have no justification for
assuming that our vision errors are Gaussian in na-
ture. If the errors are not Gaussian, then our resulting
error bound €yision,, may be incorrect. If we take a
large enough sample of measurements to capture all of
the error phenomena that may arise, then éyision,, Will
generally be too large if the error distribution is not
truly Gaussian. As we shall see later, blindly applying
a Gaussian model to raw vision error data will yield an
€vision,, that is very comservative.

A better approach is to consider the physical pro-
cess employed by the sensors, and identify particular
sources of errors. This allows us to measure each error
component individually, through experiments designed
to isolate the source of error. In visual sensing, the
basic process is that light reflects off the scene, passes
through a lens and creates an image on a camera CCD
array. The image is converted to an electronic signal
and sent to the vision processor. Sampling the signal
at intervals which correlate to the size of the frame
store buffer provides a new representation of the cam-
era scene. Several image processing computations may
be performed on the frame buffer to analyze this rep-
resentation. This view of the visual sensing process il-
luminates several possible sources for error: The trans-
mission of the light through the lens, the capture of the
light by the CCD array, the conversion and transmis-
sion of the resulting CCD image intensities to the vision
processor, the sampling routine used to fill the frame
buffer, and the image analysis computation. We as-
sume that there will be error contributions from each of
these sources and group them as follows: the lens, the
CCD array/video processing, and the electronic trans-
mission of the image. If each of these processes has an
associated error bound ¢, then

€vision,, = €lens =+ €pixel + €noise

€lens 18 the fixed distortion due to imperfections in the
lens, €pixer is the fixed error resulting from the CCD
characteristics, sampling rate variations, and video
processing limitations, and €pqise Tepresents the lumped
effect of noise in the electronic image transmission as
well as any noise that may be present due to lens and
CCD properties.

In the sections that follow, we will develop a model
of the errors giving rise to €jens, €pixel; aRd €noise, design
an experiment to characterize each error, and present
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Figure 4: Pictoral representation of system contributers
to optical/electronic noise in video proccessing. Noise vari-
ations affect the image plane location of dot centers.

the results of these experiments applied to our robot
workcell. The measurements will produce bounds on
the individual components of the error, which we will
then sum to obtain €;ision,, . Finally, we will verify this
aggregate error bound by comparing éyision,, against
measured error values observed over a large number of
random trials.

3.3 Random Noise

The first part of the proposed error model to be ana-
lyzed is dot center location uncertainty caused by the
presence of noise in the CCD, transmission medium
and processor electronics. Noise may be defined as
any unwanted signal present in an optical or electronic
system. The primary noise contributions in the cam-
era CCD are thermal currents, photon shot noise, and
preamplifier electronic noise. Further noise contribu-
tions are made by transmission of the signal along the
video coaxial cable, and repeated signal conversions
from analog to digital and back to analog. It is diffi-
cult to accurately isolate and characterize each of these
sources of noise error independently, but some infer-
ences can be drawn. We expect that the noise will be
essentially Gaussian in nature, and that it will con-
tribute a small amount of error to the measurement of
the dot center in the image frame.

To characterize the noise contribution to dot location
error the following experiment was performed: A black
anodized aluminum plate (see Figure 5) had eighteen
holes bored to a depth of 0.016 inch. The holes were
painted white to provide high contrast dots against the
black plate. The plate was placed in the camera field of
view and one hundred pictures were taken over an in-
terval of approximately twenty seconds. The dot (z,y)
locations were found using the dot location method

Figure 5: 3 by 6 grid used to characterize noise contribu-
tions of video system.

discussed in Section 3.1 and recorded for each picture.
With no camera, plate or robot movement and no light
intensity changes, any variability in the dot location
can be attributed to noise from the camera preampli-
fier, video transmission lines and the video processing
system.

The raw data were stored to disk and transferred to a
work station for processing using Mathematica”. For
each picture the (z,y) center location was computed
for each dot. The (z,y) center locations were also com-
puted after averaging consecutive frames in groups of 3,
5, and 7 exposures. For each data set average locations
along with minimum, maximum, and standard devia-
tions were computed. Comparison of the data sets (see
Figures 6 and 7) showed that the minimum, maximum
and standard deviations are inversely proportional to
the number of exposures used for averaging. Averaging
also reinforces the data’s Gaussian nature.

After studying the improvement in standard devi-
ation attained versus the amount of time required to
gather additional camera frames, we decided to aver-
age five frames for all subsequent static dot locating
trials. This yielded a standard deviation of 0.0015mm
for each dot center location. We chose a 6c error bound
to represent the worst case location error due to noise
in the video system, resulting in €noise = +0.009mm.

3.4 Camera Pixel Effects

An error term related to the deterministic physical and
electronic properties of the camera CCD and video
processing will be called pixel quantization. A cam-
era CCD develops a charge on each pixel related to
the number of photons reflected by an object which
strike that pixel. A pixel fully illuminated by reflected
photons will develop some maximum charge, and a
pixel with no illumination will develop some minimum
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Figure 6: Histogram of raw data shows magnitude of hole
location error attributable to electronic noise. Note the
quantization effects, which we attribute to the fixed num-
ber of bits used to represent floating-point numbers in the
Adept controller.

charge. The pixels on the periphery of an object will
be partially illuminated (see Figure 8), and develop a
charge somewhere between these limits. Analog to dig-
ital conversion will quantize this charge to the nearest
digital representation available. With infinite resolu-
tion the digital value will exactly represent the charge
on the pixel. Given that infinite resolution is not possi-
ble (the video quantizer uses seven bits to describe the
charge of each pixel) the digital representation is only
an approximation of the illumination of the pixel. This
approximation shifts the apparent location of the edge
of an object at each point along the periphery of the
object. Given that the dots have a diameter of 0.125in
(3.175mm) and the pixel size is 0.40mm there will be
approximately 50 pixels illuminated by each dot.

Depending on the location of the dot in the image,
there may be as many as 14 pixels which are only par-
tially illuminated. The actual number of partially il-
luminated pixels is unknown, as is the degree of illu-
mination of each of these pixels. With a single axis
translation of the dot locations, and uniform sized and
spaced pixels, recurrent pixel illuminations should oc-
cur for each table movement equal to a pixel period.
These assumptions led us to expect that the error in
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Figure 7: Histogram of averaged data shows magnitude
of hole location error attributable to electronic noise. Each
data point reflects the average of 5 hole center measure-
ments. The improvement due to averaging suggests that
the noise contribution is Gaussian.

dot center locating ability of the video system would
be periodic, with the period directly proportional to
the pixel size.

Another contribution to pixel quantization is the in-
ability of the video processing to exactly resolve the
pixel into infinite divisions for the purpose of edge de-
tection. Adept grayscale processing convolves a 3 x 3
matrix of pixel illuminations to determine image inten-
sity gradients. The first partial derivative is then used
to identify the location of the edge within the pixel.
Tian and Huhns [12] report the error associated with
this type of search as varying from 0.040 to 0.30 pixel,
depending on scene parameters.

It is difficult to evaluate each of these sources and
their contributions to camera error as individual quan-
tities. We chose to characterize the effect of these cam-
era errors as an envelope and evaluate their effect on
the problem of registering image center locations accu-
rately. This is analogous to the approach we used in
characterizing noise errors.

The following experiment was run to evaluate the
presence and effect of quantization error on dot center
location accuracy. The grid used to study the effects
of noise errors (Figure 5) was mounted on two sets of
micrometer controlled tables at right angles to each
other. We placed the grid in the image frame with its
axes aligned to the vision frame axes.



Pixellation, a gross effect
Pixel size is exaggerated

O

How does center
location change with
respect to pixel location?

Figure 8: Illustration depicts the various places a pixel
may lie with respect to the dot boundary.

Micrometer Table

—

Five picture average
at every 0.02 mm

Figure 9: The method used to vary the grid location for
pixel quantization measurement.

A baseline set of pictures was taken (5 exposures
averaged per picture) and the dot center locations
were found and stored to memory. We monotonically
translated the grid’s physical location in increments of
0.02mm in the z direction (see Figure 9) for a total
movement of 2.0mm (= 5 pixels). After each step the
image frame locations of the dot center are found and
stored to memory. This process is then repeated for
displacements in the y axis. A plot was made of the
location of each dot center with respect to the grid dis-

Pixel Grid

Expected Variation
Amplitude = Error
(worst case)

Il

Ideal X Location

Pixel Increments

Figure 10: The solid line depicts the ideal response of mea-
sured dot locations with respect to plate movement. The
dotted lines depict the expected envelope of variations due
to quantization of pixel values in the image plane. These
variations are expected to have a near sinusoidal distribu-
tion where the period is equal to one pixel size (= 0.40mm),
and an amplitude equal to the worstcase quantization error.

placement along the z or y axis of the vision frame.
The absence of quantization would yield a straight line
plot where each dot center in the image frame is dis-
placed exactly (epcise) the same distance as the grid
is physically translated (Figure 10).

Refer to Figure 11 for the following discussion of the
test results. Plots of the data versus the grid transla-
tion for each step yield responses typified by that shown
in Figure 11. The sinusoidal response of the data has
a period equal to the size of a pixel, as expected. To
select an error envelope we drew lines parallel to the
ideal response, through the maximum amplitude points
of the sinusoid. The maximum amplitude observed in
the plots is +:0.060mm, or about % pixel. This value is
the maximum error that may result from the dot’s par-
ticular placement relative to the grid of pixels. Thus
€pixel = 0.060mm.

3.5 Lens Distortion

Lens distortion is the failure of a point in the object
plane to properly map into its correct location in the
image plane. The major sources of lens distortion are
driven by lens properties and physical imperfections of
the camera.

There is a distortion proportional to the angular dif-
ference between a reflected light ray and the optical
axis of the camera lens. This distortion causes object
points to map into the image plane with some displace-
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Figure 11: Graph showing actual deviations from ideal
center location caused by pixel quantization effects. The
worst-case error is +0.060mm, as shown by the arrows.

ment from their true location in the object plane. Neg-
ative values of the angle cause shrinkage of the image
space (barrel distortion), and positive values cause ex-
pansion of the image space (pin cushion distortion).
This distortion is primarily driven by the lens shape
(wide angle, telescopic etc.).

Tangential lens distortion displaces image points in
a direction normal to radial lines from the center of the
image resulting in a skewed image plane. Causes of tan-
gential distortion include imperfect physical alignment
of the camera components, imperfect camera mount to
the robot quill, or a non-perpendicular quill.

Figure 12 shows a graphical representation of the
change in image shape with respect to several types of
distortion. Once again it is very difficult to indepen-
dently isolate and characterize the individual sources of
distortion error within a given system. Our character-
ization of error components distorting the image (lens
imperfections, physical mounting problems, etc.) will
be as a composite error, referred to as lens distortion
for the body of this work.

Our workcell employs a wide angle lens for our cam-
era to provide the required field of view (200mm x
200mm) in the presence of severe physical occlusions
presented by the quill mount location. The force sensor
and the gripper both provide constraints to long focal

Figure 12: Some field of view alterations caused by various
types of lens distortion.

length lenses which would need to be mounted further
away from the object plane to provide the same field of
view. To provide the required field of view, the cam-
era lens must focus reflected light rays with significant
angular displacement from the optical axis onto the
camera CCD. Increased distortion of the image plane
is a byproduct of the requirement to focus rays with
significant angular displacement onto the CCD. The
lens manufacturer’s data sheet listed the lens distor-
tion as approximately 4.5% of the distance from the
optical axis to the point of interest. At a distance of
100mm from the image center, barrel distortion should
be approximately 4.5mm. The magnitude of this er-
ror would drastically limit our ability to conduct ex-
periments unless some sort of correction is applied to
apparent image plane locations.

We characterized the image plane distortion using
the following procedure: We placed a calibration grid
with a 25 x 25 array of dots in the robot workcell. Each
dot was 3.175mm in diameter, and milled to a depth
of 0.406mm The dots were spaced 10mm apart (see
Figure 13).

This plate represents the object plane and is located
at a focal distance of 280mm, which produces the de-
sired 200mm X 200mm field of view. The camera (im-
age frame) is centered over the grid (object frame) cen-
ter point with a known location and orientation offset.
This provides a known transform between the center
of the image frame and the center of the object frame.
Perfect physical camera element alignment and quill
mounting would also produce an optical axis exactly
perpendicular to the object plane. This would elimi-
nate the need to take tangential distortion into consid-
eration as a contributor to lens distortion. The inabil-
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Figure 13: The 25 x 25 grid used to characterize lens
distortion properties of the camera/lens. Note the fiducial
mark used for angular alignment.

ity to perfectly align and orient the two frames requires
measuring and saving the dz, dy, and df offsets as a
transformation matrix to describe the relative position
of the frames. A series of five pictures were taken and
the dot center locations with respect to the grid center
were computed and stored using the previously men-
tioned dot locating procedure. The dot center locations
are transferred to a workstation for additional process-
ing using Mathematica?™.

The resulting data showed worst-case location er-
rors of 4.98mm to 5.78mm (see Figure 14). The bowl
shaped error surface clearly shows how the error mag-
nitudes increase with distance from the image center.
The non-symmetrical error distribution indicates that
additional tangential error sources are combined with
ordinary barrel distortion error. We rejected use of
the approximate barrel distortion curve provided by
the lens manufacturer based on these test results. We
believe lookup tables based on the raw error character-
ization will enable a more accurate and comprehensive
correction of all sources of lens distortion.

We collected the raw error values into two 21 x 21
matrices of error estimates, one for Z.yors and one for
Yerrors- One way to describe these tables of error values
is that each row describes the error as a function of z
for a specific value of y, for each y € [1,21]. Likewise
each column describes the error as a function of y for
each z € [1, 21].

Several types of fitting routines were tested for accu-

Error magnitudes of each hole center
The error magnitude is
\/ (Xerror)? 4+ (Yerror)?. Locations are referenced to the im-
age frame (z,y) origin.

Figure 14:
location before correction.

racy in duplicating the error characteristics of the lens.
A 3-d surface fit allows error estimate generation using
a single equation. 3-d surface fits using 1st through
8th order equations for # and y errors yielded worst
case error differences of 0.9mm at the gridpoints. In
an attempt to obtain a more accurate representation,
we evaluated other methods for fitting the data. Fit-
ting the data row by row and column by column pro-
vided the best error replication. Because of fairly well
behaved data for any given row or column, a very accu-
rate fit was found. Fits for 3rd, 5th, 7th, and 9th order
equations were evaluated to determine worst case er-
rors. Error estimates were very good for all curvefits,
getting better as the order increased (as expected).

Using numerous 2-d individual curvefits is more com-
plex than using a single 3-d surface fit equation, but the
increased accuracy makes this a worthwhile tradeoff.
Once the curvefits have been found, each gridpoint is
processed using the curves to generate error estimates.
The error estimates are compared to the original error
magnitudes to assess the quality of the curvefit (see
Figure 16). We decided to use the 5th order fit be-
cause it represents a 50% improvement over the 3rd
order, and higher orders provided asymptotically im-
proved performance not worth the increased complex-
ity. There are two sets of curvefit coeflicients generated
for each variable (z,y). One describes the error with



Image to Object

0.060 T
0.050 -+
0.040 T~

0.030 -:s-‘\.\

——— e o —— ———

0.020 + -, RS

0.010 + -

0.000 >y -
3rd 5th 7th

Max. Error

Fit Degree

Object to Image

0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.000

Max. Error

3rd 5th 7th

Fit Degree

Figure 15: Line graphs show effect of increasing order of
curvefits in attempt to model error behavior. There is one
line for each curvefit function. Notice asymptotic improve-
ment past 5th order for both graphs.

respect to a point’s z location, and the other describes
the error with respect to it’s y location. We generated
a set of datafiles containing the coefficients of the 5th
order curvefit (a 21 x 6 array), and transferred these to
the Adept controller. Because the curvefits are based
on data taken at specific gridpoints, an interpolation
method is required to assess error values at points of
interest that do not lie on the grid.

3.6 Lens Error Correction

Correcting lens distortion errors in the video system
is accomplished using lookup tables generated by the
designated curvefits. There are two scenarios to be
addressed: 1. For a point at a known location in the
camera (image) frame, where is the point in the robot
coordinate (object) frame? 2. For a known point in
the robot coordinate frame, where should it be found
in the camera image frame?

Figure 16: Error magnitudes of each hole center location
after correction. Here the error magnitude is €measured —
€curveit. Locations are referenced to the image frame (z,y)
origin.

The first step in correcting a location in either di-
rection is the normalization of the location to the
appropriate lookup table coordinate system (see Ap-
pendix A). This process assigns each point an index
value signifying a relative (z, y) location in the current
frame. If the normalization results in a fractional num-
ber, the point lies between characterized gridpoints,
and interpolation will be required. The integer value
of the assigned index (in both z and y), and the inte-
ger value plus one are used to select the set of curves
required to calculate an error estimate. We now have
the point location relative to the grid curve numbers
of the error lookup table. For points which lie exactly
on a gridpoint, the error can be directly calculated us-
ing the designated curvefits. The calculated error is
added to the non-normalized (z,y) location to yield
the corrected point location. Points which do not lie
directly on a gridpoint are adjusted for errors using an
additional set of curves and a 2-d interpolation to cal-
culate the error magnitudes. The interpolation routine
is discussed in Appendix A.

After implementing all of these interpolation meth-
ods, the worst-case residual distortion error can be es-
timated based on the deviation of observed data from
the fit curves, and the additional error that may be in-
troduced by the interpolation. This yielded a value of
€lens = 0.05mm.



Figure 17: Grid used for checking vision error model. Tri-
angles of various size and shape are produced by an overlay
with holes cut in specific locations to allow dots to show
through.

3.7 Testing Error Characterization

From the results of the previous sections we have

€noise 1 €pixel + €lens
0.009mm + 0.06mm + 0.05mm
0.119mm.

€visiono,

It should be noted that the lens distortion error con-
tribution after correction is less than the combined
noise and pixel errors component. This is due to the
quality of the curvefits employed to replicate lens dis-
tortion errors.

We devised an experiment to test the quality of the
error characterization. A black anodized plate of di-
mensions 914.4mm x 808.48mm with a grid pattern of
dots painted white is mounted in the robot workcell
(see Figure 17). The grid is positively located by fix-
ture balls mounted to the work surface allowing very
accurate position repeatability of the grid in any of the
four quadrants of the workcell. The grid spacing is
50mm in both the z and y directions, and the 0.875in
dots occur every 200mm. The different dot sizes al-
low gross position identification based on dot size and
facilitate extension of the calibration routines to the
overhead cameras used in the workcell. Both dot sizes
are used in the vision calibration and test routines of
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Figure 18: This histogram depicts the error in measured
leg lengths, without distortion correction. These data re-
flect the measurement of 57 triangles, or 171 data points.

the quill camera. A set of locations was devised to
provide image frame viewing of triangles defined by
selected points on the plate grid. The triangles we se-
lected represent a wide range of lengths and sizes, and
were chosen to lie in various areas of the image frame as
the manipulator moved among several test positions.

A cardboard overlay was made with one inch diam-
eter holes punched out at specific locations, allowing
only the dots of the desired triangle to show through.
When the cardboard is overlaid on the grid, a series
of triangles are visible to the camera from the selected
locations. The robot visits the set of locations and
records the image frame locations of the visible dots.
Separations between the dots are calculated twice, once
before distortion correction and once after. The calcu-
lated lengths are compared to the known leg lengths
and the errors are stored in two files. See Figure 18 for
precorrection errors, and Figure 19 for post-correction
€ITors.

Note that for the raw data (see Figure 18) all error
values are negative (image distances are shorter) with
respect to the actual distance between the two points.
This is a direct result of barrel distortion. The image
field is compressed, and as an object moves further
from the center of the image plane, the clustering effect
becomes more pronounced.
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Figure 19: The error in measured leg lengths, with distor-
tion correction. These measurements were made with the
same images used in Figure 18.

3.8 Results

Figure 20 shows a histogram of 1,041 measurements
used to test the validity of our worst-case error model.
The largest error observed is less than two times
€vision,, - Decause this experiment measures two dot lo-
cations and calculates the distance between them, we
would expect to see errors of up to but not exceeding
2€vision,,- Thus these data support our estimate of the
worst-case vision error.

4 Arm Calibration

4.1 Measuring €motion

We would like to apply the same approach to charac-
terizing and correcting of robot kinematic errors that
we used in the vision case: understand the process,
identify constituent sources of error, and measure them
in isolation. Unfortunately, we weren’t able to clearly
identify all such sources, and time did not permit an
investigation that was as detailed as our vision inves-
tigation. Thus we applied a statistical method of mea-
suring errors and post processing of data to quantify
errors and apply corrections.

4.2 Absolute/Repeatable Positioning

The ability of a robot arm to position itself at some
specified point in the workcell is affected by several fac-
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Figure 20: Error in measured leg lengths, with distortion
correction. These data reflect the measurement of 347 tri-
angles, or 1,041 data points.

tors. The resolution of the encoders used by each joint
to decipher location information is one such factor. Dif-
ferences between the kinematic model of the robot and
the actual dimensions of the robot linkages and lengths,
misalignment of the robot coordinate frame with an
arbitrary world coordinate frame imposed by the user,
friction properties of the robot joints, and variations in
the robot operating environment are additional factors
limiting the ability of the robot to be positioned with
absolute accuracy.

It is important to distinguish between the absolute
positioning capability and the position repeatability of
a robot arm. Absolute positioning capability is the
ability of the robot arm to go to a specified non-taught
point in the workcell. It is directly related to variations
between the kinematic model of the robot and actual
physical dimensions of the individual robot. For exam-
ple, the kinematic model of a robot depicts linkages as
certain specific lengths even though linkages and link
lengths vary from robot to robot due to manufacturing
limitations. Most robot manufacturers do not specify
absolute positioning accuracy due to the requirement
to gather and analyze a large amount of data to cer-
tify a performance level for each robot manufactured.
Typical robot systems depend on taught points or ex-
ternal sensing and feedback routines to minimize the
requirement for this type of positioning accuracy.

It is critical to the typical robot user to be able to
visit a specified point (taught or non-taught) with some
known degree of consistency. This is called repeata-



Figure 21: Grid used for checking absolute positioning
error of robot. Area to be characterized is outlined by white
box.

bility. Repeatability is affected by factors which vary
less than those governing absolute positioning. Even
though the physical parameters of a robot vary from
the kinematic model, they are constant (excluding tem-
perature effects) for a given robot. A manufacturer can
calculate repeatability based on worst case manufac-
turing capabilities, electrical operating parameters etc.
for a given class of robot. The resultant value deter-
mines the envelope of positions to which a robot, when
commanded to visit a specified point, will go to every
time. In the case of a robot commanded to visit a non-
taught point, the resultant position may not be within
the repeatability envelope of the commanded position.

4.3 Characterizating emotion

The grid used to generate triangles for checking the vi-
sion system errors will be used in this experiment. A
rectangular subset (see Figure 21, area in rectangle) of
all the points on the grid will be used to characterize a
subset of the workcell. The grid may be positioned in
each quadrant of the workcell facilitating arm position
error characterization in a portion of each quadrant.
The size of the corrected area is limited by several fac-
tors. To simplify curvefit routines the shape of the area
must be square or rectangular, and the arm must be
able to reach all points on the boundary of the area.
An underlying assumption for this experiment is that
the corrected camera error is smaller than the abso-
lute positioning error of the robot. That 1s, we assume

€visiona, < €motion-
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Figure 22: This histogram depicts the arm location errors
compiled in three separate visits to the specified locations
(in each quadrant). These data were used to develop the
curvefits for each of the points visited in the workspace.

We will program the robot to visit points on the
grid in three quadrants of the workcell using a soft-
ware mapping routine with access to a matrix of stored
world coordinate locations. The robot arm moves to
a location and takes a picture of the grid. By locat-
ing multiple holes on the grid, the resulting location
of the quill center after each move can be calculated
(within the vision model uncertainty). The difference
between the specified location and the resultant loca-
tion is recorded as an offset Tmotion, oy Ymotionerrerr L1E
arm then visits each of the other grid points and re-
peats this process. The (z, y) location errors measured
by the vision system at each point are mapped as a
grid of error values. Completion of the routine results
in the storing of the error grid to disk so it can be trans-
ferred to Mathematica?¥ for post processing (see Fig-
ure 22). The same general curvefit routines from the
lens distortion work were used to develop curvefits for
the arm error data. The size of the rectangular arrays
varied from those for the lens work, and varied with the
workcell quadrant. For quadrants 1 and 3 the data was
grouped into a 17 x 5 matrix, and for quadrant 2 data
was grouped into a 5 x 17 matrix. The curvefit coeffi-
cients are stored in a set of data files and transferred
back to the Adept controller.



4.4 Correcting emotion

To test the quality of the curvefits, we visited each
point again. Before each move, the point to be vis-
ited was corrected using the curvefits as follows. The
world coordinates of the desired point were analyzed
to select the appropriate quadrant. The point was
then normalized to the plate grid coordinates, and the
error associated with that point was calculated using
the curvefit equations. The error was then subtracted
from the selected absolute point to provide an error
corrected absolute location. We then commanded the
robot to move to the corrected location. After the move
the vision system was used to measure the arm’s loca-
tion. The offset from the desired absolute location was
then calculated and compared to the pre-correction er-
ror magnitude for the same point.

The ability to correct arm position errors is quanti-
fied in Figures 22 and 23). Moving to the corrected lo-
cation resulted in the robot achieving the commanded
absolute position within an envelope of +0.130mm,
yielding €motion,, = 0.130mm.

4.5 Results

From these data we conclude that our robot location er-
ror characterization, while not as detailed as the vision
system characterization, does enable accurate correc-
tions of the system errors. Note that the error corrected
movements to absolute locations are accomplished with
an error envelope only slightly larger than the corrected
vision error.

Further testing was done on the quadrant 1 data be-
cause it displayed what appeared to be systematic error
in the rotation offset calculated between the robot co-
ordinate system and the user defined coordinate system
(see Figure 24). This offset is required to establish a
map from the robot coordinate system to the grid co-
ordinate system prior to calculating absolute raw dot
locations. The (z,y) error offset required to correct
each data point to a zero rotation was calculated. All
offsets were summed and averaged. The average was
then subtracted from each raw data point, effectively
minimizing the rotation offset. The new data was used
to develop another set of curvefits for comparison with
the original curvefits. The test results tracked the orig-
inal curvefit errors almost exactly. One conclusion we
draw from this comparison concerns the quality of the
curvefit and correction routines. The curvefit is very
good at predicting systematic errors, and the routines
are robust in producing appropriate corrections to the
errors.

In addition to running repeated correction trials,
tests were also run vs. temperature from a range of
approximately 60°F, to 85°F, which represents the ex-
treme range of temperatures seen in our laboratory.
The correction spread maintained a direct correlation
to the distribution seen in the baseline tests, however
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Figure 23: Arm motion errors, after correction.

Figure 24: Graphical depiction of the arm position er-
ror magnitudes before correction. This quadrant is shown
because it had the largest initial errors.

the median value shifted with temperature. These
data could be used to develop a temperature-corrected
lookup table, but this remains for future work.



Figure 25: Graphical depiction of the arm position error
magnitudes after correction.

5 Joint 4 Orientation Error

5.1 Error Characterization

To this point the error model of the robot arm consisted
of error contributions of joints 1 and 2 only. We now
turn our attention to the orientation of joint 4.

To characterize the motion accuracy of joint 4, a set
of eight locations was visited by the arm. Each location
was divided into 24 different orientations, one every 15
degrees. At each location and orientation the grid dots
were measured visually to determine the actual orien-
tation of joint 4. The difference between the intended
orientation and the actual orientation was recorded as
a joint 4 rotation error for that point. All locations
were world locations, corrected via the lookup tables.
After each measurement, the arm returned to a home
location before proceeding to the next location and an-
gle. This ensured that all points have approximately
the same error contribution attributable to initial lo-
cation error, and avoided stiction problems associated
with motion through a small angle. The array of er-
ror values were then stored to disk and transferred to
Mathematica”™ for further processing.

5.2 Results

Figures 26 and 27 show the results of this experiment.
Evaluation of the error data from the eight holes shows
that while the error magnitudes are consistant, the in-
dividual locations of the peaks and valleys are not.
This denotes the need for individual curvefits based on
evaluations of all individual areas that may be visited
during the course of an experiment. We decided that
given the magnitude and complexity of this require-
ment, the performance improvement attainable did not
warrant the additional effort. Worst case error per-
formance due to orientation errors will encompass the
worst case error documented by the characterization of
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Figure 26: This histogram shows the results of visiting
each of the eight holes at 24 different orientations with a
step size of 15 degrees. The values depicted in the histogram
are the error at each test point.

the eight holes. Thus emqtion, = £0.20°.

6 Summary

In this paper we successfully found error numbers that
appear to capture worst-case error characteristics, and
developed systematic methods for measuring and veri-
fying worst-case error bounds. It is interesting to note
that simply applying 60 would have yielded poor re-
sults. To see why, consider the data shown in Figure 14
for these data, o = 1.1798mm. The resulting 60 bound
would be +7.0788mm, which is = 54 times the bound
obtained through our experiments exploiting the na-
ture of the physical sensing process.

One of the strong points of this work is the use of
a common methodology for generation/correction of
errors associated with widely variant processes. The
same error generation/correction schemes are used for
lens distortion and arm position correction. These
methods may also be used to correct force sensing and
finger positioning errors in future applications. The
only variations on the scheme involve the different size
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Figure 27: This circular plot compares the variation from
each of five different sets of data for one hole. The bold line
plots the average of the data sets. This hole is an example
of the typical variations seen in plots of all the data points.

data files required to handle the coefficients of the
curvefit equations as they vary by the size of the row
column matrices.

On the down side, this calibration exercise required
significant thought and work, even though the prob-
lems studied are ultimately pretty simple. This sug-
gests that the work required to produce these charac-
terizations for the myriad of parameters required to
describe general manipulation tasks will be too costly
to systematically apply in industrial practice.

Another problem is that as the space dimensionality
increases, the required table size also increases. For
this and other reasons, our methods become increas-
ingly impractical as the task dimensionality increases.
Thus it seems likely that prior arm kinematic identifi-
cation schemes will provide better performance for full
3-d error estimation. When using these methods, how
should we estimate worst-case error bounds?

Further, our initial idea of breaking errors down into
their constituent components worked well in the vision
case, but broke down in the arm case, leaving us with
weak histogram-based methods. This is somewhat un-
satisfying.

Since this is required for correct application of LMT
worst-case analysis methods, we are led to conclude
that this approach is impractical except in cases where

extremely high reliability is required (e.g, assembly of
inertial navigation instruments [14]). In the same vein,
related work in our laboratory has concluded that the
complexity of implementing planners that utilize these
worst-case bounds is also onerous. Continuing work
is examining the use of ordinary statistical error mod-
els for both planning and error characterization; these
seem much more promising.



Appendix

Appendix A.1: Normalization

The grids describing error magnitudes are arranged so
that the intersection of curve 11 in the z and y di-
rections represents the grid origin (0,0). This point
corresponds to the center of the image frame located
at (Tcenters Ycenter)- To correct the position of a point,
the point’s (z,y) image location must be normalized
with respect to the grid of interpolation curves. We
accomplish this with the following equations, based on
a 10mm grid spacing:

Zoopm = < zcoordixi?)t:n:nzccnter) +11 (1)
Ynorm ( '.‘/coonrdh]x.e;).‘.]:.r1 ;‘nycentcr ) +11 (2)

Appendix A.2: 2-d Interpolation

Interpolation will be used to correct errors in object
and image frame locations which do not lie precisely
(within £0.01mm in both z and y) on a characterized
gridpoint. We tested several interpolation methods to
identify the most accurate routine. We selected a bidi-
rectional linear interpolation scheme to calculate the
error magnitudes of points off the grid. Bidirectional
correction makes use of data describing an error magni-
tude for each point, based on the point’s (z, y) location.
We believe this routine produces an accurate physical
description of location errors caused by various sources
of lens distortion.

The first interpolation is a weighted linear interpo-
lation to provide an initial error estimate. A second
interpolation will adjust this error estimate by adding
a curvature correction. The curvature correction is
significantly smaller in magnitude than the position
error at all points of the image frame. The reason
for this is that curvature over any ten millimeter seg-
ment connecting adjacent gridpoints is quite small —
on the order of 0.02mm to 0.05mm mm. While an argu-
ment could be made for ignoring this error contribution
€curvature K €position, Our goal of high precision requires
it’s inclusion. The following example demonstrates the
proccess used for finding a point’s image plane location
given an arbitrary object plane location.

Four curvefits are required to fully describe the error
associated with any nongrid point. They are as follows:

1. z location error error as a function of z.

2. z location error Terror as a function of y.

3. y location error Yerror as a function of z.

4. y location error Yerror as a function of y.

The generation of these curves from observed data is
described in Section 3.6.

Ycurve8

Figure 28: Graphical representation of the interpolation
method used to generate error estimates for points of inter-
est not located on specific gridpoints.

The following paragraphs will explain how this in-
terpolation is performed for an example (z,y) point
(37,64). Refer to Figure 28 for a graphical representa-
tion of the points that are generated.

Question: Given a dot located at point (37,64) in the
image plane, where is the dot in the object plane?

Solution: We first normalize the point (37, 64) to deter-
mine which set of curves to use for interpolation. Using
equations (1) and (2) with values of (Zcenter) Ycenter) =
(104.8033mm, 100.7814mm), we obtain znorm = 4.2167
and Ynorm = 7.3219. This shows that the point (37, 64)
lies between z curves 4 and 5, and between y curves 7
and 8.

Next we determine the correction values Zeror and
Yerror through interpolation. We use the same interpo-
lation method to determine both of these values, using
the appropriate tables of Zerror and Yerror curvefit func-
tions. In the discussion that follows, we will use the
term z to refer to the Zerror OF Yerror term that is being
determined.

The first step in determining the value of z at
(Znorm» Ynorm) 1s to interpolate between the adjacent
z curves. We will denote these curves Xcyrvea(V)
and Xcurves(y); both of these curves are functions of
y. Evaluating these functions at ¥y = Yporm yields
24 = Xcurve&(ynorm) and z5 = XcurveS(ynorm)a corre-
sponding to the points labelled 4 and 5 in Figure 28.
We then obtain our first estimate of the desired correc-
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Figure 29: Dot location errors after single axis interpola-
tion using a matrix of points that Lie at worst case locations
halfway between the curves.

tion value z by weighted linear interpolation:

25 — 24
5—4

z=24+ (3norm - 4)

The resulting error estimate is reasonably accurate
given the small amount of curvature present across the
span of the boundary curves. Figure 29 shows the error
magnitudes at worst-case points of interest using this
single axis interpolation.

We can improve our estimate of z by using the
y curves to estimate the surface curvature between
Xecurvea and Xcyrves- Our goal is to compute a cur-
vature correction dz which estimates the surface de-
viation from a straight line connecting points 4 and 5.
We accomplish this by computing dz for y curves 7 and
8, and linearly interpolating between the resulting dz7
and dzg values.

To obtain the value of dz7, we first compute 274 =
}/curveT(l_znorm_l) and 275 = cuwe?(l—znorm]); corre-
sponding to the points labelled 74 and 75 in Figure 28.
We now calculate the linearly interpolated value

275 — 274

27 = 274 + (znorm_ 4) 5_ 4

This value corresponds to a pure linear interpolation
between points 74 and 75. We can now determine the
curvature error for Yeyrve7 as
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Figure 30: Dot location errors after double axis interpo-
lation using matrix of points projected to Lie at worst case
locations. Note major difference in span from Figure 29.

dzy = Ycurve7(znorm) - 27

dz7 reflects the surface deviation from linear at curve
Yecurve7r- We use a similar calculation to determine dzg,
the curvature correction at Y.urves. We then estimate
the curvature correction at (Znorm, Ynorm) @s

dzg — d
dz = dz7 + (Ynorm — 7) —g—=~

We then obtain our final error estimate
Z = z+dz.

This method is used to find the correction terms
Zerror 304 Yerror, Using the appropriate curvefit lookup
tables. These terms are then added to the point coor-
dinates (37, 64) to determine the corrected point in the
image frame.

Figure 30 shows the error magnitudes at worst-case
points using this bidirectional interpolation. The nar-
rower range compared to Figure 29 corresponds to the
improvement provided by curvature correction, which
decreased the worst-case error by a factor of two. Note
that the final worst case error estimate is well within
the limits of the hole location error attributable to
residual lens distortion errors.



Appendix A.3: Image To Object Frame
Mapping

All previous work dealt with the problem of mapping
object points to the correct image frame location. This
helps us answer the question: Given a point on an ob-
ject where should it show up in the image frame?

Another question we would like to be able to an-
swer is: Given a point in the image frame, where is
the corresponding point on the object? To answer this
question we will require another set of error tables to
map points from the image frame to the object frame.
The error data to describe the offsets in this direction
will be generated using the previous correction tables,
a grid selected to provide convenient index locations,
and an iterative routine for finding offsets between the
two frames. When selecting the gridpoints and spacing
to be used for the new error table, a couple of issues
should be considered: First, for convenience the grid
should be a 21 x 21 matrix of image locations, which
allows us to re-use our curvefit and interpolation rou-
tines. Second, all values of the image-to-object error
grid must lie within the boundaries of the previously
defined object-to-image error grid. This requirement is
driven by the use the object-to-image grid in an iter-
ative manner to assign error values to image locations
on the new grid. Locations outside of the previously
found grid will cause the error estimation program to
crash.

We will construct our image-to-object mapping by
building z-curves and y-curves analogous to the object-
to-image mapping. This is accomplished by visiting
each image grid point (z;, %), and numerically search-
ing for the corresponding object point (z,,y,) which
yields correction values (Zerror; Yerror) Such that

T, =

i =

Zo + Terror

yU + yerror

The correction terms associated with the image grid
point (z;,y;) are then ~Zerror and —Yerror- For a given
image grid point (zi,3;), this numerical search is ac-
complished using the following procedure:

1. Set our initial estimate of the object frame location
to the given image grid point: (z,,y.) «— (&4, v:).

2. Lookup the error correction for the current (z,, y,)
using the existing object-to-image correction ta-
bles. This yields correction terms Zerror @and Yerror
for the current object point estimate (z,,y,).

3. Compute the image point corresponding to the
current object point: (z,y) — (Zo,¥,) +
(mcrron Yerror)-

4. Compute the discrepancy in the image points dz =
z; — z; and dy = y; — y;.

5. If dz and dy are both less than 4:0.001mm, exit the
loop and return —error and —¥error as the image-
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Figure 31: Histogram represents the difference between
the actual image points (for all points on the calibration
grid), and the error corrected image points.

to-object correction values for (z;,y;). Otherwise,
set (2o, ¥0) — (2o, ¥o) + (dz, dy) and go to Step 2.

Once correction values have been found for each image
grid point (z;, ¥; ), then 5th-order curve fitting and bidi-
rectional interpolation may proceed as in the object-to-
image case. Figure 31 shows the residual errors that
remain at the end of this numerical search. All errors
are less than the loop exit threshold of 0.001mm; most
are significantly smaller.

We ran the following experiment to test both the in-
terpolation routine and the newly developed error grid.
Selected points in the object frame were corrected to
find the image frame coordinates of the object loca-
tion. After conversion, returned locations were used
as object locations and input to the object to image
correction routine. The locations returned from this
routine were compared to the original image points for
error offsets. The double conversion used points chosen
to represent what we believed would represent worst
case conditions for the interpolation schemes. The pre-
sumed worst case occurrence is a point halfway between
two curves on both the z, and y axes, the point furthest
from the curves used to characterize the worst case er-
ror offset. We collected data using an array of locations
which represent the midpoints of all 21 curves. We
also collected data using a set of 11 curves {every other
curve). The location array for this data set consisted
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Figure 32: Graphical representation of the post interpola-
tion errors using only 11 curves in each axis. This effectively
doubles the distance from the characterized curves used for
error estimations.

of points at which the unused z,y curves intersected.
This allows comparison of interpolated data to true lo-
cation data using a distance two times greater than will
occur during normal interpolation calculations. Theo-
retically this should represent approximately twice the
worstcase error magnitude. An error file of the (z,y)
location errors after each test is stored to disk and an-
alyzed using common statistics routines.

See Figures 32 and 33 for the following discussion. It
is interesting to note the very small differences between
the 11 curve and 21 curve error graphs. Lens distortion
is very well behaved across the face of the lens. The
lack of discontinuities results in replication of error re-
sults for both situations even though the distance from
characterized curves is twice for the 11 curve test as
for the 21 curve test.

a1

Max. 0.0344
Min. -0.0544
Sigma 0.01438
120 T
100 +
3 80 1
c
(]
=2
jon
© 60 +
[V
40 +
20 +
0 4 5
N O © o O [s2 B (e} [« BN V]
- & © © & © © © =«
CID C.> O| <.D o =N o] (= =)
Error (mm)

Figure 33: Graphical representation of the post interpo-
lation errors using all 21 curves in each axis.



Appendix B.1: Motion Measurement
Requirements

To begin the process of measuring arm position offsets
several conditions must be assured. The camera height
must reflect the proper focal distance (280mm) from
the lens to the surface of the calibration plate. We
wrote a software routine to identify the correct height
in terms of z-coordinate parameters.

All absolute positioning will be done with respect to
the quill center. This requires registration of the quill
center in vision coordinates. A software routine rotates
the quill and measures the location of a given dot (in
vision coordinates) after each movement. A routine to
fit an arc to the five points then locates the quill cen-
ter in vision coordinates. Solution of the quill center
in vision coordinates provides the transformation be-
tween the quill center and the image frame. This is
the equivalent to finding the transformation from the
robot coordinate system to the vision coordinate sys-
tem using taught points (Adept’s method). A signifi-
cant advantage of our method is that the desired tool-
ing is in place during the calibration process, meaning
continuous checks and comparisons/corrections may be
performed.

The approximate center of the test quadrant must
be identified in an initialization program. This locates
the quadrant to be calibrated and positions the robot
to ensure the center of the calibration grid is located
within the 200mmx 200mm window of the quill camera.
Another software routine aligns the center of the image
frame to the center of the calibration grid and stores
the rotation matrix describing the offset between them.
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